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Abstract

The purpose of this paper is to show that the monodromy of action variables of the Lagrange top
and its generalizations can be deduced from the monodromy of cycles on a suitable hyperelliptic
curve (computed by the Picard—Lefschetz formula).
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1. Introduction

Let (M, w) be a symplectic manifold of dimension 2nd consider a Lagrangian fibration
F:M— B,

whereB is a manifold of dimension. We shall also suppose that each fibgr= F (g
is compact and connected, and so it is diffeomorphic to a Liouville torus.
For eachy € B, there is an open neighborhoddc B of ¢ and a diffeomorphism

V=FYU)->UxT":p+> 1, .... L. ¢1....,¢pn),

whereT" is then-torusR" /Z". Moreover the coordinatds, called action coordinates, are
smooth functions depending gronly, and in these coordinates the symplectic form is

w = Zd(f)z AN d]l'.
i=1
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The coordinates; are called angle coordinates. Thishas the structure of a symplectic
principal bundle with a structure grodp¥, Lagrangian fibers and a Hamiltonian action of
the structure group whose momentum map is the projection map of the bundle.

The question of global existence of action—angle coordinates on the principal bundle
M — B has been studied in a pioneering paper by Duisterrf$§atA most obvious
obstruction to the global existence of such coordinates is of course the monodromy of the
bundle, which is a homomorphism fram (B, b) to H1(F},, Z) = Z". The first example of a
mechanical system with non-trivial monodromy is due to Cushman (the spherical pendulum,
sed9]). Itturned out later that many other integrable systems have this property. We mention
here the Lagrange tdg], the spherical pendulum with quadratic potentia — a)? [30],
the so-called Kirchoff top (a rigid body in an infinite ideal flui&).

Generaltheorems in this direction are due to 28] and Nguyej18]. These results have
an analytical nature: they do not use the underlying algebro-geometric structure of the prob-
lem. In this paper, we shall develop this second (algebro-geometric) approach on a concrete
example: the Lagrange top and its generalizations. The idea of the proofis the following. Let
us suppose that we have an algebraically completely integrable Hamiltonian system. This de-
fines a Lagrangian fibration and we suppose that each Lagrangian fiber (Liouville torus) can
be complexified to an affine part of a Jacobian varigti,) = HO(I,, 2Y)*/H1i(I}, Z),
where I}, is a spectral curve depending énThe manifoldB is the complement to the
discriminant locus of the spectral curyg. It is easier to describe the monodromy of the
complexified Lagrangian fibration (with fibet&77})). Indeed, its monodromy coincides
with the monodromy of the homology Milnor bundle with fibefg (1},, Z) and bases.

We recall that the latter is associated to the Milnor fibration of the polynomial defining the
spectral curvd,. In particular it comes with a canonical Gauss—Manin connection and its
monodromy is computed by the Picard—Lefschetz theory [8]3.Once the monodromy

of the cycles of the homology Milnor bundle computed, it remains to consider the mon-
odromy of the cycles generating the homology of the real pas( bf), and hence of the
real Liouville tori.

Of course ifB is simply connected there is neél ') monodromy at all. A simplified, but
sufficiently general example is whdT is defined by a polynomial which itself is a versal
deformation of an isolated real simple singularity. The complement to the real part of the
complex discriminant locus may not be simply connected (this set should not be confused
with the complement to the real discriminant locus, fE8). The simplest non-trivial
example is the3 singularityy? + x* and the curve defined by itsal versal deformation is
related to the spectral curve of the spherical penddLzh Indeed, the discriminant locus
Aap Of the polynomial(x? + 1)2 + ax+ b contains an isolated poiliz = 0, b = 0).

This paper is organized as follows. &&ction 2 we define the generalized Lagrange top
as a(g + 1) degrees of freedom completely integrable Hamiltonian system. The underlying
algebro-geometric structure is explainedSaction 3 It turns out that, by analogy to the
classical Lagrange tofg = 1) [10], each complexified Liouville torus is an affine part
of a generalized Jacobiafi(I") = HO(I] 2(cot + oo™)*/H1(I'at, Z) of a genusg
hyperelliptic curvel". Here Iy is a smooth compact affine curvg,the compactified and
normalizedlag, X \ Iaff = oot 4+ oo™, I'" is a compact singular curve obtained fram
by identifying oo™ andoo~. Therefore to compute the monodromy of Liouville tori, we
have to determine first the monodromy of the homology bundI€.af(on the place of
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I, and then the monodromy of the cycles@f(Ix, Z) which generate the homology
of the real part of/(I""). For this reason, we need the real structure/@®) which is
described irSection 4 Finally, using this and the Picard—Lefschetz formula, we compute

the monodromy of the top, provided that 2 (Section 3.

2. Définition of the generalized L agrangetop

Consider the following Lax pair

d
g W= [0, xA + £2],

where
T = yh+To—MA™t — - — T8 € s0(3)[r, 271,
0 -1 0 0 -w3 w
geN, x=|1 0 0|, 2= w3 0 —-w1 ],
0 0 0 —w; w1 O
0 —1+mws w2
In=| A+ mws 0 -1 |,
—w2 w1 0
0  —v3 Vi
ie{L2....gh. Ii=| yis 0 —yu1

—VYi2 Vil 0
To simplify the notations, we note below
Y01 = o1, Y0,2 = w2, Y03 = (1+m)ws.
The Lax pair(1) has(2g + 2) first integrals
Hy = —3residug_o(A*1tr(r(1)?)), k=-1,0,1,..., 2.

We have in particular

H_1 =1+ mws, Hy = %(a)f + a)g + (1+ m)zwg) — Y13
The Lax pair(1) can be written in an equivalent form as a Hamiltonian system
d
A= ) H )
a* {x, H}
where
m 2 15 2 2
H= HO — mH_l = E(wl + Wy + (1+ m)a)3) — Y1,3.

@)
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The Poisson structure, .} is given by
3

Wik vitd = Y Agvivje for i, j€{0,1,..., g}, 2
c=1

where A}, is a skew-symmetric matrix

Az = (Al A%y A3) = (0,0, —1), A1z = (Afy, A5 Ay = (0, 1,0),
Agz = (Azz, Ad, A3y) = (=1,0,0).
Itis easy to check further thét) is a Liouville completely integrable Hamiltonian system
of (¢ + 1) degrees of freedom, whe#é;, i = —1,0, ..., g — 1 are first integrals, while
Hj, j=g,g+1,..., Hy are Casimirs. We call the systeh) the generalized Lagrange
top (another generalization may be found29]).
We shall identify the Lie algebrago(3),[.,.]) and (RS, A) by the Lie algebras anti-
isomorphism([A, Bl = —A A B)
0 —x3 x2
X3 0 —x1 | €50(3) = (x3,x2,x1) € R3.
—X2 X1 0

Let o1, a2, 03 be the Pauli spin matrices defined by

1 0 — (0 -1 0 1
o1 = ’ 02 = _1 ’ 03 = )

0o -1 1 0 10
and denotes = (o1, 02, 03). Then p1, 02] = 2+/—1o3z (4cyclic permutation) which
implies that the map

1 . 1
X = XO
2v/-1 2v/-1
1 —\/—_lxl —\/—_]_x:», — X2
€ s5u(2),

x = (x3, x2, x1) € R3 >

T2\ —VFIa+xe NV In

whereX = xo = x101 + x002 + x303 is a Lie algebra isomorphism betweRd and the
(2 x 2) skew-Hermitian traceless matricas(2). Note that
—det(xo) = ||x|I, trace¥y) = —3x.y.

Composing these two previous morphisms of Lie algebras, we get a Lie algebras anti-
isomorphism betweetso(3), [., .]) and(su(2), [., .]), we deduce fron{l) an equivalent
Lax pair, namely

50(3) > x>

1 . 1 — /-1
50(3) > 2 — 5 2= ( @1 @3 wz) € su(2),
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and finally

1 . 1 Yil vis—vV—1yi2
50(3) > I} —~> I = ' ’ ) e su(2),
Yoy 1 T 21 <Vi,3 +v=1yi2 —Vil

i=12...,g
If we denote
U) =284+ (L4 m)ws — V=1o2)x* = (y1.3 = V=Lyrx "t =

- (Vg,?: -V _1yg,2)7
W) = x¥ 4+ (A + m)ws + V=1w2)2® = (yr3+ V=128 — -

— (Vg3 + vV —=1yg2),
V(x) = w1xf — 11087 — ppx 2 — o — ey,
then
o 1 f‘( ) 1 V(x) U(x)
> — X)) = ———
2J/-1 2V—1\ W) —vo
1 - - -
- st Fox8 —x$ 1. ).
> __1(03x ox 1X %)

The generalized Lagrange tép) becomes under this anti-isomorphism
2v—1%f(x) = [o3x + Q, I (x)].

In the following section, we shall describe the algebro-geometric structure of the complex-
ified generalized Lagrange top. Therefore, we @ut x2, x1) € C2 and consider the Lie
algebra anti-isomorphism between (3, C), [., .]) and (2, C), [., .])-

3. Algebraic structure

In this section, we show that the generalized Lagrange top is an algebraically completely
integrable system in the sense of Mumf{id, p. 3.53] This means that the generic complex
level set of this system is an affine part of a commutative algebraic group: the generalized
Jacobian/(C, co™) of an hyperelliptic curve of genygwith two pointsco™ identified.

The construction and properties of generalized Jacobians are due to Rodedljizht
(even if the generalized Jacobian have been already used by JE&Plind Lang14,15];
they rely on the theory of Abelian varieties developed by \(&8]. Below we shall use the
Serre’s notationf23].

LetC be the compact and normalized hyperelliptic curve defined by equetienf(x) =
Hl.zf{z(x — x;). Lett be the hyperelliptic involution: (x, y) € C — (x, —y) € C. Denote
by oo™, 0o, the two points “at infinity” onC (co™ = ((c0™)), andC = C \ {cot, co™}.

The pair(C, oo™) defines a singular curv@ (the singularization o€ with respect to the
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modulusco™ +007). As atopological spac@’ is C with the two pointso™, co™ identified.
The structure shed of C’ is defined in the following way. L&D~ be the direct image of
the structure shed under canonical projectioi — C’. Then

) Op if PecC,
OP - .
CHix if P=o0,
wherei, is the ideal of0, formed by the functiong having a zero ato™ andoo™ of
order at least 1. We define the sh&afD) whereD is a divisor onC such that Sup@) N
{oot, 007} =0 by
L(D)p if PeC,

L' (D)p =
D {o;o if P =oc.

Let
L' (D) = H(C', £ (D)), I'(D) = HY(C', £/ (D)), (D) = dim¢ L' (D),
i'(D) = dim¢ I'(D).

As the shealD¢ /O is coherent, lep = dimc(Op/O%) with P € C’, the arithmetic
genusp, (dimension of1(C’, ©")) of the singular curv€”’ is obtained from the geometric
genusg of C by the relation

Pa= g+ dcc-
In fact

800 = dimg (Cil) = dimc <%) —1=degm)—1=1,
then

pa=g+1

A divisor D on C with Supp D) N {co™, 0o} = ¥ verifies
I'(D) —i'(D) = deg D) + 1 — pa = deg D) — g.

Now we define the equivalence relatioft'.

Definition 3.1. Let D; and D, be two divisors onC with SupgD1) N {cot, 007} = @
and SuppD2) N {oco™, 0™} = @. Then D;~™D, provided that there exists a global
meromorphic functiory on C such that /) = D1 — D2 andvs=(f — 1) > 1.

Definition 3.2. The generalized Jacobian@f, denoted/(C, oo™), is the subgroup Piec)
of Pic(C’) := Div(C")/~"™ formed by the divisor® on C with Supp D) N{cc™, 0o~} = @
and degD) = 0.
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Itis known that/(C, co™) is an extension af(C) the usual Jacobian 6fby the algebraic
groupC*:
0— C* = J(C,005) 3 J(C) - 0.

An explicit embedding of a Zariski open subset/o€, co) in C3¢+D is constructed by
the following classical construction due to Jacfitd] and Mumford[17]. Let

fx) = 2812 —|—a1x2g+1 —|—a2x2g 4+t aggi2
be a polynomial without double roots and define the Jacobi polynomials
Ux) = x8T1 + ugx® + ugflxg_l + -+ uo,
V(x) = vgx® + vg,lxg_l +--- 4 vp,
W(x) = x5t + wex® + wg_lxg_l + .+ wo.
Let T¢ be the set of Jacobi polynomials satisfying the relation
f(x) = V2(x) + Ux)W(x).
More explicitly, if we expand

2g+1

fx) = V2(x) = U W) = Y cilaj, u, vi, wp)x',
i=0

and takeu ;, v, w; as coordinates €3¢+, then

Te = {(u, v, w) € C3EY = ci(aj, up, vy, wa) =0, i€{0,1,...,2¢+1}}.

Proposition 3.1. If f(x) is a polynomial without double root then

1. Tc is a smooth affine variety isomorphic6C, co*) \ ® for some divisor theta. Under
¢, the set® is the translate of the set of special divisors of degyeel by co™ + co™.

2. Any translation invariant vector field on the generalized Jacobian of the curve C with
modulusm = {oo™, co™} can be written in the following Lax pair form

d . g I'(a) - Vx) Ux)
2V-1-T(x) = | T"x), —= I'(x) =
G [ (x),x_a] &) (W(x) _V(x)>,

wherea € C andU(x), V(x), W(x) are the Jacobi polynomials.

Proof. The proof of part (1) of the above proposition can be found in Preyi®p For the
proof of part (2), se€7,10,11] O

Let Divé*1(C) be the set of positive divisors of degree+ 1) on € and Div ¢ ™(C) ¢
Divé+1(C) be the subset of diviso® = Zfill P; on C having the property Sugp) N
Supp(D)) = #. The set Dy ***(C) is naturally identified with a Zariski open subset of



106 O. Vivolo/Journal of Geometry and Physics 46 (2003) 99-124

the symmetric producfg+1C There is a bijection betwe€ef: and Diy, i gH(C). In fact
Tc¢ is smooth and the bijection is an isomorphism of smooth algebralc varigfigs

For some fixed divisoDg = Y 5" W; € Div"#7(C), we consider the Abel-Jacobi
map

A:DivEETHE) c $8HLE — J(C, 00™),

g+1 g+1

g+1 P’xd Pi x&dx
I N D3] M S IS of A

Next we applyProposition 3.10 generalized Lagrange top. L€} be the curve” as above,
whereh = (h_1, h, h1, ..., hag) € C?¢*+D and

Sx) = x%8F2 4 2n_ x84 2h@8 4 2pgx %L 4 4 2y,
Let us consider the complex invariant level set of the generalized Lagrange top
Ty = {(@i, yjx) € C¥™D T H 1(wi, yix) = h-1, Hi, yjx)
=h, Hi(w;, vjx) = h1, ..., Hy(wi, vjr) = hog}.
This linear change of variables
ug = (1+mwz — v/—1wz, vy = o1, we = (1+m)ws + v/—1wy,

ug1=-y13+~—-1y12, v 1=-y11, we1=-y13—+v—1y12,
ug 2 =—y23+~=Lly22, vgo=-y21, wg2=—y23—+—1y2, (3)

ug = —yg3+ «/—_1Vg,2, V0 = — Vg1, wo = —Vg,3— \/__]-Vg,Zy
identifiesT¢ andT;, where the curve€ andC, are related in the following way:
ar=2h_,
ap = 2h = 2hg — Hlmhél,
az = 2hy,

azg1 = 2hog 1,
azg12 = 2hog.

We summarize this in the following theorem.

Theorem 3.1.

1. The complex level s@}, is a smooth complex manifold biholomorphicAd, co®) \ ©
where® is a theta diviso® = J(C, cot) \ ADivy ().
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2. The Hamiltonian flows of generalized Lagrange top restricted/jfoinduce linear
flows onJ(C, co®). The corresponding vector fields, H_1}, {., H}, {., H;} for i €
{1,2,...,g — 1} have a Lax pair representation obtained from the Lax pdir by
substitutingz € P and using the linear change of variabled)

2J—_1%F(x) — [f(x), F(“)] @)

X —a

4, Thereal structure

Consider the s&&?¢+D of all real polynomials of the fornfi(x) = x?$724+2h_1x%8+1 4
2hx@8 4+ 2hqx%8 1. 4 2hy,. Its coefficients are real and its roots are distinct. Denote by
A c R2&+D jts discriminant locus. Denote further I6ythe connected component of the
complement toA in RZ¢+D | in which f(x) has no real root (obviously there is only one
such component).

We recall that a real structure on a complex algebraic vaftieiyan anti-holomorphic
involution S : C — C (e.g.[24]). The real structure off, is given by the usual complex
conjugation

(@is V1,5 V2.ks + - Vo) B> (@i, V1 js V2.ks -+ -5 Vagls)

and we denot@® := 7, N R3s+D,
There are two natural anti-holomorphic involution &, co%) \ ©,

J1i (U VW) — (U, -V, W), J2: (U, V. W) — (W, V,D).
Denote byM 1 (respectivelyM>), the set of fixed points af; (respectively/s)

M1 ={U,V,W): U, Vreal Vimaginany,
Mo={U,V,W)y: U=W, Vreal.

Proposition 4.1. The real structure ofi¢ is given by the involutiod, and My = T)F.
Proof. Fixed points of/; in T¢c give real(w;, y1,;, Y2k, - - -, Yg,1) @nd vice versa. O

Let W; be 2g + 1) Weierstrass points off,, where (without loss of generality) we sup-
1 1
pose thaty s W; = Y8 Wyi14:. Let us choose a basisi, 8)ic(1, .. ¢+1), jeiL....q)
of H1(C,Z) as shown inFig. L Givenw = (dx/y, xdx/y,...,x8dx/y), ande; =
fy,» w,i=12...,¢+1,f; = 9951_ w, j=1,2,..., g,wedefinedy, 1 to be theZ-module

Ziea, ..., eg+1, f1, .., fo)

Proposition 4.2. Assume thaf(x) is a real polynomial with simple roats

1. 7,%is not empty if and only if € C.



108 O. Vivolo/Journal of Geometry and Physics 46 (2003) 99-124

Fig. 1. Projection of the cycle} andy; on thex-plane.

2. The real structure/, acts onJ(C, co®) asz € C8*1/Agei1 > —7 € C8T1/Ageyq,
wherez is the complex conjugation o *2,

Proof. The definition of/> gives that if(U, V, W) € T¢ andJ2(U, V, W) = (U, V, W) then
V2(x) + U W(x) = [V@)]? + U@ = f(x) >0 Vx eR.

If f(x) vanishes then this zero is in fact double, and this is impossible. This show&that
is strictly positive. Reciprocally, it € CthenJo(35 Wy = Y5 wi. O

Now let us determine the action @ on S$T1C. Let P, = (x1, ¥1), P2 = (x2, y2), ...,
Pyi1 = (xg41, yg+1) be generic points od. Let us consider the curvk = {(x,y) €
C?: y = V(x)} whereV(x) is the Lagrange polynomial of degrgesuch thatX contains
P1, P, ..., Pgy1. Theintersection points betweérandX are the point®y, Po, ..., Pet1,
01, ..., Qg+1. The pointsQ; = (x, y') are determined simply by = V(x') wherex' are
roots of polynomialV?(x) — f(x) (which is the resultant of — V(x) andy? — f(x) with
respect toy). We have

g+1 g+1
(y = V()le) = D1+ Da— (g + D(oot +007), Di=) P, D2=)_ 0
i=1 i=1

g+1 g+1
y=Do+ Dy~ (g+D(cot +007), Do=> Wi, Dy=Y Weirii.
i=1 i=1

We get((y — V(x))/ylc) = D1+ D2 — Do — Djy and (y — V(x))/y(co*) = 1 then
D1 — Do~" Dy — D2. ChooseDg = Zf:ll W; as the base point of the Abel-Jacobi noép

Recall that ifS is real structure o, thenS induces a transformation on the sheafes
oL 7

S$*: (U, O¢) — I(SU), O¢), f > foS
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We also denote by* the transformation induced aB!. We shall say that € HO(C, 21)
is S-real provided thaf*« = «. MoreoversS induces an involution 06’1 (C, Z) (the group
of topological 1-cycles). I € HO(C, £21) andc € C1(C, Z) then |, S*a = fs(c) a. lf ais
S-real,wege o = [ o @ Weshallsay € Hi(C, Z) is S-real (respectivel$-imaginary)
if S(c) =c (respectiveﬁyS(c) = —0).

The differential one-forms’ dx/y on C are real (for the usual real structure), and if we
denotew = (dx/y, xdx/y, ..., x8dx/y) then

Jo(D1) D> Db Dy
/ o= / o=-— / o= / .
Do D Dy Do

/
0

Therefore the involutiod, acts on/(C, co*) asz — Jo(z) = —Z,z € Cg+1/A2g+1, where

7= fg)lw andJa(z) = Djﬁ(Dl) 1)

Theorem 4.1. Th]R C (Cg+1/A2g+1 is topologically a(g + 1)-torus and its periods are
generated by;, i € {1,2,..., g+ 1}.

Proof. The fact tharT}ER is compact and connected is proved by PreVia8). Consider the
image ofT,]lR in J(C, co) under the Abel-Jacobi map. Asis real andy; are imaginary

cycles,vthémi e C#*+1 are purely imaginary vectors. We shall determine the actian of
on H1(Cy, Z) and hence on the period lattiek, 1. Let us choose a base 84 (Cy,, Z) as
in Fig. 1

Under the standard anti-holomorphic involutidnis sent tos; which is homologous to

o4+1 +1
8j = Voo = Doin1. i) injs1 Vi- AS Voo = = 2101 i thens; = §; + y; + yj41. Thus
fi=Tfi+ej+ej, (f)=—fj=—fi—ej—ej1.

Denote by: € C8*1, Re(z) € Re+ the real part of. O

Complete furthefes, ..., eg11, f1, ..., fg} toabasis ofstlpyfe, ..., egt1ls f1, ...,
fe» fo+1} under the condition thgRe(f1), ..., R&(fe41), fo+1} is a basis ofRs*1, The
fixed points of/, in C+1 are given by

F = O O

Id —A
oz =z, Jo=|[ ¢ A=
0 —Idg_;,_]_

R B, O O O O
O O O O o o
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If z € C8TY/Z{ey, ..., €g+1, f1, ..., fe+1} the only possible solutions are

Vg1 ... qer1) € S5TY Vjie(l2,... g},
p;j=0modf;, 2pei1=0modf,;1.

Assume that the vectof, 1 tends to infinity, and get
V(g1 ... qgr1) € S5T Vi€ (L2, g), pj=0modf;.

Finally T,]F is generated by, fori € {1,2,..., ¢+ 1}.

5. The Monodromy

5.1. Thecasg =0
The systen{l) is

d

—1To = [T, £2],

dr
or equivalently

w1 = —Mwrw3, w2 = Mw1w3, w3 =0.

Itis a Hamiltonian system with one degree of freedom with the following Poisson structure

{0 ] wi w) ws
wy 0 —(1+m)ws wy/(1+m)
wa (1 +m)ws 0 —wr /(1 4+ m)
ws || —w2/(1+m) wi/(1+m) 0

and the Hamiltonian function

2

m 1

H = Hp —
where
H1=0AQ+mw3
is a first integral and
Ho = 3(@? + 03 + (1 +m)?w?)

is a Casimir function. The spectral curve associated to the Lax(ppis given by the
polynomial

y2 — f(x)=y? — Ux)W(x) — V2(x)=y? — x> — 2h_1x — <2h + Lh21> =0.
1+m
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It is a genus zero curve and its generalized Jacobiéli idt is identified to the invariant

manifold of the system. The spectral curve as well the corresponding Lagrangian fibration
have no monodromy.

5.2. The casg = 1 (the Lagrange top)

The systen{l) is

d
g 0+ To— Ml =[x+ Io— Nt xa+ £2], (5)
or equivalently
dF—[F 2] — 1[I, x] dF—[F 2]
d[ O - 07 l’ X £ dl’ 1 - 15 .
If we denote
0 -y3 »
=1 ys 0o -n|.
Y2 N 0
then the system takes the form
W1 = —Mw2w3 — Y2, Y1 = Y203 — Y302,
w2 = mwiw3 + Y1, Y2 = Y301 — Y103,
w3 =0, 73 = Y102 — Yow1.

It is a two degrees of freedom integrable Hamiltonian system with Poisson structure

{-,-} ” w1 w2 w3 T 72 73
w1 0 ~(1+m)ws  w2/(1+m) 0 -3 Y2
wo (14 m)ws 0 —wi /(1 +m) ¥3 0 -7
wy || —we/(1+m) w/(1+m) 0 —1/(l+m) m/1+m) O
M 0 -7 Yo/ (L +m) 0 0 0
Y2 V3 0 -n/(1+m) 0 0 0
Vs -2 /(1 +m) 0 0 0 0
(6)

and Hamiltonian
H= %(wf +a)§ + (1+m)a)§) - V3.
The second first integral is
H_1=0+mws,
and the Casimir functions are

Hi = —w1y1 — w2v2 — (1L + m)wzys, Ho =302 +v5+ 7).
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, ez Vertical

€3
Axis of the top

Projection
of the top's
axis

Fig. 2. The Lagrange top.

The spectral curve€ is given by
V= fx) =y —x* —2h_1x° — <2h + Lhﬁl) x> —2hix —2hy=0. (7)
1+m

The system(6) describes the motion of a symmetric rigid body spinning about its axis
whose base point is fixedrig. 2). A constant vertical gravitational force acts on the center
of mass of the top, which lies on its axis. The vectois the unit vector, expressed in
body coordinates, while the vecteris the angular velocity of the body. For more details,
we refer the reader tf2,6]. For completeness we give below the Lagrangian function in
Euler coordinate®, v, 6 (shown inFig. 2), which are local coordinates on an open subset
of the configuration space $8). This problem will have three degrees of freedom. It has
three first integrals: the total enerdy the projectionM, of the angular momentum on the
vertical, the projectiod/3 of the angular momentum vector on theaxis Fig. 2).

Let A = B # C be the moments of inertia of the body at 0, andelgteo andes the
unit vectors of a right moving coordinate system connected to the body, directed along
the principal axes at fixed point 0. We note dythe angular velocity of the top which is
expressed in terms of the derivatives of the Euler angles by the formu[a](cf.

® = wie1 + wren + waez = e + (¢ SinB)es + (¥ + ¢ cosh)es,

where 0< ¢ < 27,0 < ¢ < 27 and 0< 6 < 7. SinceT = 3(Aw? + Bw3 + Co?), the
kinetic energy is given

T = A + $*sin®0) + 3C(J + § cosH)?,
and the potential energy is equal to
U = mglcosf,

where! is the distance between the fixed point and the center of mass of the top. The
Lagrangian function reads

L=T-U=3A0%+ ¢*sin®) + 1C(¥ + ¢ cosh)? — mgl cosh.
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Let ps, py andpg be the conjugate moments. To the cyclic coordinatasdy correspond
the first integrals

oL . .5 2 .
p¢=£= = ¢(AsIin“0 + C cos0) + ¢ C cosh,
oL . .
Py = E/f = M3 = (¢ cosh + )C.

The last conjugate momeni, is equal topg = AA. The momentum mapping of the
Lagrange top is

F:TV->RE  ($%0, pg py, pe) — (E, M3, M).

Eliminating ¢ and¢, we get the total energk of the system as

Eet2y M + (M; — Mjc059)° + mgl cost
2470 ¢ 2Asin29 g '
Let
2M3 2E MZ/1 1 2M,
= —_— = — —_— _— = N a3z = 5
A Y U VG 3= 7a

and obviously(E, M3, M,) — (a1, a2, a3) is a bipolynomial map. Moreover, we shall
assume that

A = mgl.
Then action variables are obviously given[ty

I = g(u ——du, I = M3, I3 =M,
2r y1—

where
g(u) = 2u® — apu® + (3a1a3 — u + az — §(d5 + a3),

and the cycle is defined irFig. 3b. It is well known[26] that for a real motion of Lagrange
top, the polynomiag(z) has exactly two real roots; anduz on the interval-1 < u <1
and one fow: > 1 (Fig. 3a). The linear change of variables

= -2+ %az, v=—2v—1p
transforms the curvé(x) to the curve
I'=(n* =48 - ig - j),
where

. 1 12 i1, 1.2 1.3 12
l—l—Zalag—i—l—zaz, Jj=jgaz+ 8ala2a3 691 — 71692 — 1645
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gu) P N

AN 1 / S
-701 \\_,.y “u

() (b)

Fig. 3. (a) Graph of the functiog(x) and (b) projection of the cyclg on theu-plane.

Subsequently we shall consider two elliptic curv&sand

C={(x,y € C2: y2 =x4+a1x3+a2x2+a3x+l}.

Remark 5.1. C is nothing but the curvé (7), where

A=1, E=H, M3 = H_;, M, = Ho, m=C-—1
The curve< andI” are isomorphic, more precisely as the Jacobiai(C) of C [27]. The
birational mapping identifying” and " is given by

Az Az yAL
+ A n=-—""—H5]):
x—rog 2 (x — rg)?

(x, ) — (S = ()

whererg is a root of f(x) such that its real part is positive add = rg’ + %alrg + %azro +
a3, Ay = r2 + airo + ao. The map(+x) sends the rootg to co and then translates
the barycenter of the three remaining roots into the orjdin Using (xx) it is easy to
check
d¢  dx
n y

(k%)

Now we are going to study the discriminant locdsc R3 of the polynomial f(x) =
x* + a1x® + axx? + azx + 1. We denoted, = A N {az = ¢} C R? in the (a1, a»)-plane.
Let us consider the following cases:

e If f(x) has areal double roatthen

fx) = (x —u)?@xP+ax+p), acR, Buck\{0.
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Hence

c+2/u_2u’ a2=_—3—§+uz-
Lt2 uz u
A, is parameterized by € R \ {0}.

e If f(x) has areal triple roai then

ap =

fx)=x—u)x—a), ouck)\{0}.

o If ¢ = +4 thenu = 1 is a real quadruple root. It is the poift, az) = (£4, 6).
o If |c| > 4 then there are two possibilities foar moreover: has the sign of-c.
o If |c| < 4 thenf cannot have a real triple root.

e If f(x) has two double roots then

)= +ax+B>% acR, BeR\{0).

o If (o, B) = (—¢/2, —1) then f have two real distinct double roots of opposite sign.
Therefore the two branches af. have an intersection point ét1, az) = (—c, -2+
c?/4).
o If (a, B) = (¢/2, 1) then
— If |c| > 4 then we have two different real double roots of the same sigrrashey
represent a normal crossingAf with coordinatesas, a») = (c, 2 + ¢2/4).
— If |c| < 4 then we have a pair of complex conjugate double roots. They represent
azn isolated point of the real discriminant locus with coordiné&tesas) = (¢, 2 +
c“/4).

The sectiong\, of the discriminant locug are shown irFig. 4. LetC. be the connected
component of the complement 1. in R2, in which f(x) has no real root:

C ={(a1,az,a3) € R3: (a1, a2) € Cy3 and |az| < 4}.
Lemmab.1. We have
_ AV -1

I = 5 lzdx,
T 1 X

|2
N \

= >4
jaj<s jay=4 ay

Fig. 4. The discriminant locus of(x).
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Vv

Fig. 5. Projection of the cycleg, 81, 87 andy., on thex-plane.

wherey? = x* 4+ a1x® + axx? + azx + 1 and the cycle/ is defined irFig. 5.

Proof. We have

olL, A du V=1 dx AV-1 0 % yd
- R — = _— = X
dap 4w J, v v 1 n Y 2 8(12
Then
A/ -1
h=— f%dx-i-g(al,as),
T J,x

whereg(as, a3) is a function. To computg(as, az), we note that for any fixeth1, az) such
that the polynomialf(x) has no real root, we may continuously defagmin such a way
that(as, a2, az) lies onA. But under such a deformation, the cygel€as, az, az) vanishes.
And hencel (a1, az, az) = 0 andgﬁy1 ydx/x? = 0 which impliesg(az, az) = 0. O

5.2.1. The monodromy of Lagrange top
Let F : T*V — RS be the moment map of the Lagrange top, whére= SO(3). We
consider the fibration

F:T*v\ F 1) > R3\ A.

This is a proper topological fibration, the fibers of which are diffeomorphic to three-tori
T3. We consider the real monodromy Bfdefined as the action of1(R3 \ A, ¢) on
HE ). 7). ¢ = (c1.ca,c3) € R3 \ A. We choose now a basis, «» and a3 of
HE ), 7) inthe following way:

e Foraj we take the path Qﬁ_l(c) defined by fixingy, 1. 6, pp make one circle on the
curve defined by the equation



O. Vivolo/Journal of Geometry and Physics 46 (2003) 99-124 117

1 c? €3 — ¢ C0SH)?
S R B I Al
2A 2C 2A sin40
e Foras we fix 6, pg and¢ andy run through the interval [@®x].
e Forasz we fix 6, pg andy and¢ run through the interval [@x].

c1 + mgl cose.

With such a choice of basis oill(F_l(c), 7)), the action variables are given by

1

= — . 1=1,2,3,
o a,-o i

I
whereo = pgdd + pg d¢ + py, dy is the fundamental one-form @i V.
Theorem 5.1 (Bates and Cushmd,9]). If zg € C thenz1(R®\ D, z0) = Z and the real

monodromy of F can be represented, on the bas{gefined aboveor H1(F~1(c), Z), by
the matrix

o R R
o r O
» O O

Proof. The proof of this theorem will follow from the following lemma. O

Lemmab5.2. The real discriminant locus of the real polynomiétk) = (x2+ 1)2+ (a1x +
a2)x? in a small neighborhood of the origin iR?{a1, a»} consists of the poin®, 0). When
(a1, a2) makes one turn aroun@, 0) in a negative direction then the roots fifr) exchange
their places as it is shown iRig. 6.

Proof. The proof is straightforward. O
™
hl.'//(_‘-\ . hz
~_ |
>
11./_ - 3,
~_ |

Fig. 6. Thex-plane.
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/N
@

Fig. 7. The loopc € 71(Ce, 20)-

Remark 5.2. For (a1, ap) € R? sufficiently small, the real polynomigi(x) has either two
double roots orithas no double root at all. Hence the real discriminant logis)a$ of codi-
mension 2 and hence itis the poift 0). This phenomenon has a more general ngtLég

To compute the monodromy of the action variables (equivalently, the monodromy of the
homology bundle of the Lagrangian fibratiB), we shall consider the monodromy of the
homology bundle of the Milnor fibratioR of the polynomialy? — x* —a1x® —axx® —azx—1.

This is a fibration with fibe€ overR3\ A, defined by

B— R3 \ A4, {y2 =x*+ a1x3 + a2x2 + azx + 1} — (a1, a2, az).

71(R3\ A, z0) is not trivial if and only ifzg € C.

DenotePy = (c, 2+ ¢?/4) on the(as, az)-plane, and consider a simple negatively ori-
ented (because the mép, M3, M;) — (a1(E, M3, M), a2(E, M3, M;), a3(E, M3, M))
reverse the orientation) looparoundPy (seeFig. 7).

This definesc as a loop inR3 \ A with zo € C as base point. It is possible to deform
continuouslyx to a loop (with the same orientation) containeddim {a3 = 0}. The
monodromy of roots off(x) induces the monodromy of cycles iy €, Z). This situation
is described irFig. 8a and b. Lety; be the image of after making one turn alongin
negative direction. Then the classical Picard—Lefschetz forfBlimpliesy] = y1+81—8]
and moreover we have, = §; — 87 where the projections @f, §; andy., on thex-plane
are shown irFig. 5. That is to say

I AV=L [ JTO 4 — A\/—_lyg V) M__lf VFx)
1= 5 x = 5 dx + > dx,
2 v, X 2 n X 2w veo X

and
f Y ){éx) dx = 2/~ 1 residug_o < ' ){éx) dx) = —/—1na;.
Yoo

We see thalt; is transformed td; + I.
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5.3. The casg =2

i /7/

Fig. 8. (a, b) The cycle;.

For this case, the systefh) is

d 1 2 -1 2
E(X)\‘l‘FO_Fl)\ — DA™ =[xr+To—TA™" — 12074, xA + £2].

As above we put

I =

0 -y3
V3 0o -n|.
Y2 n 0

In these notations

d
—Io= 1[I0, 2| — [T
g0 [Io, 2] — [I1, xl.

or also

W1 = —Mww3 — Y2,

w2 = mw1w3 + Y1,

w3 =0,

dr

Y1 = y2w3 — Y3w2 + 02,
V2 = y3w1 — yiws — 6,

V3 = Y1w2 — Y2w1,

Let us consider this Poisson structure

93 = w1 — w1H>.

dr

01 = w3b2 — w203,

92 = w103 — w3b1, .

6
(b)
0 —-63 6>
63 0 -6
—0 61 0
d d
—Fl:[Fl,.Q]+[F2,X], _FZZ[FZ,QL

(o3l w w2 w3 T T2 s 6, 6 63
wq 0 —(1 + m)w3 r“f; 0 -3 Y2 0 —63 6,
w2 1+ m)ws 0 —l—iln_l Y3 0 -MN 63 i 0 -6,
ws ~itm Ttm 0 - o= 0 i i O
T 0 -3 112m 0 93 -—92 0 0 0
V2 73 0 —“m b 0 0 0 0 0
73 —Y2 Tﬁ 0 02 —91 0 0 0 0
6 0 —03 T 0 0 0 0 0 0
0> 03 0 -2 0 0 0 0 0 0
03 —0, 0 0 0 0 0 0 0 0

119

(8)
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The Hamiltonian function corresponding (®) is

H = (0} + w3+ (1+ m)wd) — 3.
The Hamiltonian functions in involution wit/ are

H_1 =1+ m)ws, Hi = —w1y1 — w2y2 — (L + m)wzys — 63.
The Casimir functions are

Ho =32 + v2 + v3) — w161 — w2b — (1 + m)ws3bs,

H3 = y101 + y202 + 303, Hy = 3(0% + 05 + 63).
The spectral cuné is given by

vV=x8+2n_1x5+ <2h + #hﬂ) x* 4 2h1x3 + 2hox? + 2h3x + 2ha.
m

The monodromy of cycles on spectral cutvgenerates the monodromy of momentum map
associated to the systg(@8).

5.3.1. The discriminant af? + 1)3 + x3(a2 + bx+ ¢)
Let us consider the real discriminania, b, ¢) of the polynomialP(x) = (x2 + 1)3 +
x3(@2 + bx+ ¢) when(a, b, ¢) is closed to(0, 0, 0). Assume that

P(x) = (x? + c1x + 2)?(x% + dax + do),
and hence

Y 2a(c2 — (e — 1) b (c2— 133 +3c2+3c2+5)

cg ’ 36‘%
20(cp — 1)(2c3 +3c2— 5
o a(c2 — 1)( c§+ 2 )’ 1= alcs— 1),
3c2
20(c2 — 1) _
d].:_—37 d2=czzv

2
whereq verifies 3% = c(co + 2) andc, # 0. The discriminant ofx? + c1x + ¢2)? is
A1(c) = ¢ — 4cp = Lca(—10+ ¢5 — 3ey),
and the discriminant ofx? + dix + do) is

42¢3 +3cp—2
Ao(cp) = df —Ady = — 3 —2———.
]

Itis easy to check that1(c2) andAx(c2) are negative wheeyp is close to 1. Therefore the
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Fig. 9. Discriminant off(x).

discriminantA(a, b, c¢) is parameterized neéd, 0, 0) by

20(co — (3 - 1) (c2— D33 +3c3+3c2+5)
a= , b= ,
cg 3c§
2 —1)(2c¢2 + 3¢, -5
c= a(c2 = D cg + 52 ), ¢ € (0, 00)
362

(seeFig. 9). Denote the set iffig. 9byA. The above shows that the connected component
of the complement to the discriminant locus, in which the polynomfah- 1)3 + x3(@@ +

bx + ¢) has no real roots is homeomorphickd \ A. Moreover this implies that, more
generally, the connected componént R® of the complement to the discriminant locus
in which the spectral polynomial

m

x84 2h_1x° + (Zh + h§l> x* 4 2h1x3 + 2hox? + 2hgx + 2h4

1+m

has no real roots, is homeomorphic(@®?3 \ A) x R3. Therefore, we have the following
lemma.

Lemma5.3. The fundamental group @fis isomorphic to the free group with three gener-
ators
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4 N

Yoo

37 4

\ J

Fig. 10. Projection of the cycles, y3, yo, 81, 62 ON thex-plane.

5.3.2. The monodromy of the generalized Lagrange top

The monodromy group of the top is a homomorphism frartC, p1) toZ2 = Hy (T3, Z).
On the other hand, the representationsebn C2 are well known. Such a representation
is either a direct sum of one-dimensional representations, or a direct sum of the trivial
one-dimensional representation and the standard (two-dimensional) representation. As ex-
pected, the monodromy of the top coincides with this second non-trivial possibility. To see
this it is enough to compute the image in £ of at least one non-trivial element of the
fundamental group.

Consider the basig, 3, Y, 81, 82} oOf H1(C, Z) shown inFig. 10 The cycles gener-
ating the Liouville tori are the cycleg, y3, Y-

Let k1 € m1(C, p1) be the loop shown ifrig. 11 The monodromy of the roots of the
polynomial f(x), induced by this loop are shown kig. 12 Therefore, whetia, a2, az)
makes one turn along the cycley; is transformed tg/}, where

M=r+81-8=y1— 13+ Vo

Fig. 11. The loops.
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X X X
S—

Fig. 12. Monodromy of the roots of(x).

The monodromy of cycles is given by the following matrix (in the b&gis y3, y0}):

Consider the loog, € 71(C, p2) shown inFig. 11 The monodromy of the roots of the

polynomial f(x) induced byx> is shown inFig. 13 The cycleys is transformed tg/;
where

Y3=13+82—38,=y3— y1+ Voo-

The monodromy of the cycles is given by the following matrix (in the bggisys, ys}):

1 -1 0
Mo=]0 1 0
0 1 1

Fig. 13. The monodromy of the roots @x).
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